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Dynamic problems of stress in nonlinearly elastic (with infinitesimally small deforma-
tions) and elastic-plastic media have been investigated in [1 to 5],

Below, Eulerian coordinates are used to study the plane problem of a suddenly loaded
half-space occupied by a geometrically nonlinear Almansi material (with finite defor-
mations) [6], Conditions permitting the construction of continuous and discontinuous
self-similar solutions are established, A solution is obtained to the one-dimensional
problem, An approximate solution is constructed to the problem of a half-space subjec-
ted to a sudden load which is inclined to its boundary, It is shown that an Almansi medi-
um exhipits a Poynting effect [7 and 8],

Consider the half-space X = 0 occupied by an Almansi medium [6], with the defin-
ing Eqs, given by 1 (Ou; Ou;  duy Ou,

Oy =MD )  2ue en'ST(a—xj*‘E“E—aTj) 1)

Assume that the medium is in an unstressed state up to the time £ =0, Suppose that
at the instant £ =0 all points on the boundary plane X; =0 are suddenly subjected to
a finite constant motion with velocities Uy , Uz . Thus, following conditions will be
satisfied on the moving boundary ;

vy (Z10) = 100 Vg (710) = Vaos vy =0 (z10 = 019 2) 2)

It is required to determine the state of stress resulting from the sudden load in (2).
The problem formulated permits certain assumptions with regard to the displacements

up = uy (2, 1), uy = uy (zy, ), ug =0 3)
The equations of motion may be written, in Eulerian coordinates, as
0y, dv; 93,
p(ﬁ“f”m?x—k =z, (4)
8ui 6“1 du, ( au{)
%iT 0t T tkor ot = % \Bu oz, )
Differentiating (5) with respect to )y , we obtain
9 [ Ou, dv,, Ju, 02u,
5{(3}">=55(%*&1>—%—ava§c ®)
j i * TR
The continuity equation, in Lagrangian form, is given by
P = po (1—~2J, + 4T, — 8Jy)"" )

Here, Qg is the density in the unstressed state, and /i are the invariants of the ten-
sor €44 .,
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Taking into account {1),(3) and {7), Eqs, {4) and (8) may be written as
vy

3{01 3&}2
pg{i—m;)(ax +a;ax)W(3‘+2p}{{ mx}gg**%gg} 8}
avz 30)9, 3&1 auz )
wit—o) (5 +ngm) =van (g =0 5 =0
8wy dvy dwy dwg dvy vy do,
TS Ao —ng e G =%y Y T iy
We introduce the nondimensional variables T,x, [y . Vo . defined by the relations
t =11, x; = ze,7, vy = Vit vp = Valio (e = A+ 20l p} (9
Here 7' is a characteristic time,
Eqgs, (8) may now be written in nondimensional form
vy 3V, dw
AV, vy dws . od
mﬂ(&r + W ar)‘"“‘a}?’ k T A4 2p (19
6031 avy Oy avy oVy 30)2
Bt =z A—o)— 2 o o =% T —Vier

‘The boundary conditions (2} become
Vi {2y (1)) =Vyp Vi (2 (3)) = Vg (1)
Since the coefficients in (10) do not contain X and T explicitly,and Ko, Vg, in (1)
are constant), then (10) admits self-similar solutions when all the unknown quantities
are functions of the "space~time coordinate” ratio §
= 6 _tda o & d
E=%" =T Er w7 &
Application of (12) wansforms (10) into the ordinary differential Eqs,

(12)

dv d d .
A—ai—n G —t—w i el 0 u—wm—p e =0 1

4V 1 dv; 4V,
A=) G~ i~ =0 @ — G+ (h—DGE=0

Eqgs. (13) have a trivial solution when ¥ , V5, W, and W 3 are all constant, Here, the
pertinent solutions have discontinuities along the ray §, and are constant on either one
or both sides of the ray, The nontrivial solutions will occur when the determinant of the
coefficients in (13} vanishes,

Expanding and setting the determinant equal to zero, we obtain

E=V:4+C, (14)
1
o {(1 — ) A @a? k2 }‘/[(1 — @)% - g — K3 - bk2eg? }/x 45)
1,2 2(1 —an)

Thus, the nontrivial solutions will occur on the fan of rays radiating from the origin
of the X’ T plane and inclined to the T~axis at an angle whose tangent is given in {14},
For the waves travelling in the X > 0 region, the upper sign must be used in {14},

Substituting (14) into (13), we obtain the following systems of equations for the deter-
mination of the desired parameters:
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on the first fan on the second fan
(C¢ — 1 + @) do, + wydw, = 0 (Ce? — 1 + ©) d; + Wydwy = 0
(1 — @) dV, + Cido, = 0 (1 —a,) dVy + Cydo, = 0
dVy — 0dV, + Cydwy = 0 dVy — @gdVy 4 Cydoy, = 0

Consider the problem of constructing continuous solutions, Continuous solutions (if

such are admissible under boundary conditions (11)), are constructed from the constant
4 & ¢ 2 ¢  solution (zero) in the G, region of the X'T plane
(Fig.1). A continuous transition to the variable
solution in the (; region occurs on the ray OF ,
Here, solution is obtained by integrating (16) and
utilizing conditions in the (o region
Vieo = Vaoo = O == g =0 (A7)

This solution determines the quantities ly, ,
Va,. Wy, and Wz, on the ray (0. Note that
from (15) O} >Cp for all values of Wy , Wz .
Thus, the ray OC', bounding the second fan on
the right side, is always to the left on the ray
@D , bounding the first fan on the left side, In
the ( region Between these rays, the solution is
constant: /1y, , Va,. Wy, ., Wa, . The solution
v on the second fan varies continuously in accord-
ance with the Eqs, given in (16) for the second
fan, and there is a continuous transition from
this solution to the constant one of Vy,, Vi ®y0 ®g in the Go region, Note that the six
conditions (11) and (17) completely define the six constants ©jo, @Waov Vg, Vaxs 054 and
®,,, and hence the solution in Gl and Gg .

1t should be noted that the continuous solutions thus obtained must satisfy the conditions

Fig, 1

Bow = Vie o Cae 2 Vip 4 Cop = &g, Eie = Vit Cre < Vigo + Cio™= E1oo (18)

Otherwise, no continuvous solution is possible,

The construction of a solution in the presence of discontinuities follows a different
procedure, It was shown in [10] that compressive shock waves can exist in an Almansi
medium only in the direction of wave propagation, For the problem at hand, this means
that Wy and [/, will possess no discontinuity on the shock wave, while the discontinuity
[Wp]l=wg<0,.

The following relations hold for the dimensionless propagation velocities of shock
waves on the different sides of the discontinuity ;

0, = [(1 — /20, ) (1 — ©,) 1",
. Vie=00—8, (19)
0 == [(1 — a0, ) (1 — 0, )],

The trajectory of the shock wave in the X'T plane is given by the ray QD which is
inclined to the T-axis at an angle whose tangent is equal to G, (Fig.2). In the G Tegion,
the solution is equal to zero (17), On the shock wave @D , the quantities /4 and w; have
discontinuities, Because of the presence of -the shock wave, the first fan of characteristics
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vanishes, Everywhere in the region 7, , bounded by the shack wave and the characteristic
OC constituting the right side boundary of the second fan, the following solution is con-
stant: Vi=V, #+0, o = o, +0, w,, =V, =0

2

The values of the constants [/; , and W;, are not known beforenhand, but are determined
from (16) and the boundary conditions (11) in the region G . The relation between /],
and Wy, is obtained from (19). The solution in the region to the left of OC is constructed
in a manner similar to that described above,

A straightforward analysis of (16) and (19) shows that, in both cases, the resultant solu-
tions yield the functional dependence of ©i«, @2y, Vix, Via, 03y and oy, on V,, and Vv,
whereupon the solutions in the regions ¢; and (75 may be constructed,

However, these functional relations are not generally obtainable for arbitrary /14 and
Vao .since the system of differential equations (16) is not integrabie by quadrature, The
study below gives an exact solution for the one-dimensional case for which /3 =0 and
an approximate solution for the general case of an oblique shock, for small [, and Vg,.

One-dimensional problem, In this case,
Wy =Vz=0, From(15), C; = (1 — @), C3=0.
The only possible solution to (16) is the constant one,
i.e, there is no second fan G (Fig. 1), and the para-
meters in the regions G and G, are identical. The
first and third Eqs, in (16), for the first fan are identi-
cally satisfied while the second equation is easily
integrated, The resultant solution in the (f; reglon is

Vi—Vie=2 [(1 — @) — (1 —0w)"],

A &8 ¢ 2

E=Vit ( —ay” @0
Applying conditions (17) on the ray 0F, we obtain
from (20) W30 = — Vio (14 /4 Vyp) (21)

From the combination of (20) and (21) we obtain
the following explicit relations between /3 , W, and
€ , which are valid under conditions obtainable from

Vi=%E—1)o,=1~1Y, & +2%1+%V,=8<E<1, V<O

Fig. 2

(18):

where §, and §, are boundary values of § on the rays QD and OF , respectively,

1f conditions (18) are not satisfied, i.e. [/19 >0 , then the solution is piecewise con-
stant but discontinuous, The functional dependence of Wy o and 8 on Vi = /4, is given
by (20).

Oblique shock for small }io and Vao . In this case, @, (z, 1) << 1,

o, (z,7) <€ 1. The coefficients in (16) may be expanded into series in W, and W4, and
self-similar solutions may be constructed approximately in terms of series, Hereinafter,
we confine ourselves to a first approximation, neglecting all quantities of a higher order
of smallness compared to unity,

The justification for such an approximation is that, in the one-dimensional case, the
results of such an approximation were sufficiently close to the exact solution (for very
strong shock waves with stress discontinuities of the order of loskg/cmz (Wp=20,1) the
discrepancies in calculations did not exceed 17,).
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Investigation of the continnous solution, For the velocity of sound
{15}, we have the approximate Expressions
Cf=1—0,0=1—0; Cf = B o), Cy= k{1 + Yau) (2
Integration of (16), making use of the conditions in the regions G, and @, (Fig. 1),
yields the solution for the region &
g ==ty = Q, Vo= V.z* == {23}
ViV, ==ty — 0 == Yioy, — ek BTt g
Integration of (16) for the second famn, making use of the conditions in region G,,
yields the solution for the region Gp

Vi ¥y, == b [0y, = 0y + 31 (0,7 — 03] (28
o == 2 (1 — kD) {01 — 0) — (B - (o — 0,7, =Ttk 4 1he)
I S 7 k2
V2 = 252 (1 — &%) (e _&3‘3@ oY O

To determine W ,, /y,, Wyo and W gy , it is necessary to set 4 =wy =0 in (23)
(region (g ) . and to set Vy == Vi, Vy = Vi, 0, = 0y and @y = Qg in (24) (region
(o). The approximate resultant solution is given by

tho == — Fig -+ aol v% 4 20V, e = — Vo o, Vio* -+ 25, Vee? {25}
V.=V 5V + bV®

Ok — 3083 - 2085 - 2043 — B8R — 120 — 17

g == 1ZA—k{d =4
agy == [2RE (Y -+ BN @y = — Yy (4 — kY (1 — 3k) — K (s -+ aw} | (1 ~ k)
igﬁi = izk ’(‘§ o %ﬁ}é’i; éx H - {ifii .é_ g}‘}! 5)2 = ;‘2?2’

Utilizing (18}, we obtain the conditions which must be satisfied by Vyy and Vo in
order that a solution be possible, Since, in virtue of the second Eq, in (24), Wy -~ Wy, =0
for any Wy , it is easily seen that the first inequality in (18) holds everywhere

Ege — Bop == dyV1o? b dgV o 2> 0 {26)
dy = by ~— a,, + Yok (2;, — a0}y dy = by — ay -+ 1ok (g, — a2)

The second relation in {18} may be brought into the form

Ere — Eroo= Y2 (Vo + s (Y2 + @,,) Vot + Yok (1 — R Wa?] < 0 (27)

From (26) and (27), it follows that the differences §y — &y, and §3— Eo are small,
Expanding (23} and {24) in terms of these differences and retaining the low-order terms,
we obtain expressions for [y , ¥, w; and Wy explicitly depending on the direction of
the rays in 7y and Gp .

In {7y . the solution is given by

[ """2/3 (gmi)mzlﬂ (gwj)ﬂ (28)
Vi= —ay (4 + Yoy 0= V3 =0, &, <E<H
with §,, as given by {27).

In o . the solution is given by

0 = 0+ )1 (%, 0rp — 1) (& = o) — Ve k2 (E — Fa® B0 E  Be  (29)

The functions Wy, [ and Vp are determined from (24) and (29), making use of(25),
with € 5, as given by (26).

Fig. 1 represents the calculated resslts as functions of X at & fixed time Ty , Atany
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other time Ty, the curves will be similarly stretched along the X-axis at a ratio of
Ta /Tl .

If the initial values [jn and [/ do not satisfy (27), the preceding solution loses
meaning, It is of interest to note that (27) is not satisfied for a pure shear (/5 = 0)
along the half-space boundary, i.e. a sudden shear at the boundary causes a compressive
shock wave in a direction normal to the boundary, This represents a dynamic manife-
station of the Poynting effect [7 and 8],

An approximate, discontinuous solution is constructeua in the following manner, From
(19), we have Vx. = — o, 1+ Y, ), B =1—% 0,6 —s o?), (30)

Egs, (24) and (26) are still satisfied, In the Gco region, the solution equals to zero,

On the ray QD (Fig, 2), the quantities //; and W; have jumps from zero to /4, and W,
respectively, obtained from (25), while [/, =Wz, =0, In the (5 region, (29) holds, The
resulting solutions are shown in Fig,2.

Note the following. As (26) shows, the angular range of the characteristics of the
second fan is a second-order quantity in comparison with 4o and Vo . On this very
"narrow” fan, the change in the state of stress is very intense, albeit continuous, However,
the region in which this change occurs increases in direct proportion to the elapsed time.
Thus, the initial discontinuity in the shear velocity /54 gradually diffuses through the
medium, This is the structure of a shearing "shock” wave in an Almansi medium,

The known [11 and 12] results for a linearly elastic, Hookean material are obtained
here as the limiting case for /35 =0, Va0~ 0.,

The unloading problem is not examined here,
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