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Dynamic problems of stress in nonlinearly elastic (with infinitesimally small deforma- 

tions) and elastic-plastic media have been investigated in [l to 51. 

Below, Eulerian coordinates are used to study the plane problem of a suddenly loaded 

half-space occupied by a geometrically nonlinear Almansi material (with finite defor- 
mations) 161. Conditions permitting the construction of continuous and discontinuous 

self-similar solutions are established. A solution is obtained to the one-dimensional 
problem. An approximate solution is constructed to the problem of a half-space subjec- 

ted to a sudden load which is inclined to its boundary. It is shown that an Almansi medi- 
um exhibits a Poynting effect [7 and 81. 

Consider the half-space x1 2 0 occupied by an Almansi medium [6], with the defin- 
ing Eqs. given by 

6ij = hs. .e 
1 

1, kk -+ Wij, eij=T ‘z+>-Z$z) 
i (1) 

3 i i 3 
Assume that the medium is in an unstressed state up to the time 6 = 0 . Suppose that 

at the instant $ = 0 all points on the boundary plane Xl = 0 are suddenly subjected to 

a finite constant motion with velocities UQ , Uzo . Thus, following conditions will be 
satisfied on the moving boundary: 

"1 (%J = "109 "2 (GOI = "zot us zz 0 (210 = "10 4 (2) 

It is required to determine the state of stress resulting from the sudden load in (2). 
The problem formulated permits certain assumptions with regard to the displacements 

Ul = u1 (q, q, F2 = % (21, a us E 0 (3) 

The equations of motion may be written, in Eulerian coordinates, as 

i 
aui , 

ihi 

) 

hii 

P 3F -+ ‘k$ =T (4) 

all. all. 
vi= & '- '&;I ;L Uk (&k-z) (5) 

Differentiating (5) with respect to xj , we obtain 

(6) 

The continuity equation, in Lagrangian form, is given by 

p = p. (1-2 J, + 4J, - 8.Q” (7) 

Here, Po is the density in the unstressed state, and Jk are the invariants of the ten- 

sor e:fj . 
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Eqs, (8) may now be written in nondirrmnsional form 

The sandal conditions (2) become 

VI 6% (TN =vzis, v, (%I WI = v20 (Id 

Since the coefficients in (IO) do not contain x and T explicitly, and I&o , b’w in (U) 
are constant), then (10) admits self-similar salutions when all the ~~~0~ quantities 
are functions of the “space-time coordinate” ratio ti; 

e_->’ &e_-& a 
4 d 

T&T=== - 7” de Pi 

AppliCM30n of (1‘2) transforms (It?} into the ordinary differential Eqs. 

Eqs. (X3) have 8 trivial solution when VL , If2 , Ur, and W n are all constant, Here, the 
pertinent solutions have d&continuities along the ray 5, and are constant on either one 
or both sides of the ray. The nontrivial solutions will occur when the determinant of the 
coeffkients in f 13) vanishes, 

~~~ndin~ and setting the de~e~~nant equal to zero, we obtain 

5 = v, zk c,,, 

Thus, the nontritial solutions till occur on the fan of rays rad~a~ng from the origin 
of the XI plane and inclined to the T-axis at HIT angk I&W tangem is gbw in f14f, 
For the waves traveliing in the X > 0 region, the upper sign must be used in (14). 

Substituting (14) into (13), we obtain tht: following systems of equations for the deter- 
mination of the desired parameters : 
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on the first fan on the second fan 

W - i + o,)do, + 02do, = 0 (C2 - 4 + 01) W-t- wzde = 0 

(1 - a1) dVI + Cldq = 0 (1 - OJ dir, + C2 do, = 0 

dVz - o&, + C, do2 = 0 dif, - o&V, + C2 dmz - 0 

Consider the problem of constructing continuous solutions. Continuous solutions (if 
such are admissible under boundary conditions (11)) are constructed from the constant 

A B C 4 E solution (zero) in the G, region of the x7 plane 

(Fig.1). A continuous transition to the variable 
solution in the G1 region occurs on the ray OZ. 
Here, solution is obtained by integrating (16) and 
utilizing conditions in the G, region 

Fig. 1 

V Iw = v,, = Olco = cl& = u 117 

This solution determines the quantities r/,, , 

va. ’ WI. and %. on the ray 03. Note that 

from (15) Cl > C, for all values of W1 , W2 . 
Thus, the ray OC , bounding the second fan on 
the right side, is always to the left on the ray 

@ , bounding the first fan on the left side. In 

the G region between these rays, the solution is 

constant: VL, V2,, Wl, , Us.. The solution 
on the second fan varies continuously in accord- 
ance with the Eqs. given in (16) for the second 

fan, and there is a continuous transition from 
this solution to the constant one of Vu,, V,, or,,, oZo in the Go region. Note that the six 

conditions (11) and (17) completely define the six constants 010, WZOV VW, Yz*. ml* and 
02*, and hence the solution in G, and Ga . 

It should be noted that the continuous solutions thus obtained must satisfy the conditions 

r +?* = VI, + cz* ,> IV,” + (. “20 = EZO, 41* = V1,-t- (:I* a v,, -t qm= 41, (18) 

Otherwise, no continuous solution is possible. 

The construction of a solution in the presence of discontinuities follows a different 
procedure. It was shown in [la] that compressive shock waves can exist in an Almansi 

medium only in the direction of wave propagation. For the problem at hand. this means 
that W2 and V, will possess no discontinuity on the shock wave, while the discontinuity 

[lul]=w&<o. 
The following relations hold for the dimensionless propagation velocities of shock 

waves on the different sides of the discontinuity; 

8, = L(i - l/?o,,) (1 - 0,,r11”2. 

8” = ((I - 1&*) (1 - oJ’~Z, 
v,, = 80 - 8, (19) 

The trajectory of the shock wave in the x7 plane is given by the ray a which is 
inclined to the T-axis at an angle whose tangent is equal to $ (Fig, 2). In the G, region, 
the solution is equal to zero (17). On the shock wave a , the quantities VI and W1 have 
discontinuities. Because of the presence ofthe shock wave, the first fan of characteristics 
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vanishes. Everywhere in the region G,, bounded by the shwk wave and the characteristic 

OC constituting the right side boundary of the second fan, the following solution is con- 
stant: v1= V,*#O, 01= 0 I* # 0, $* = vz* = 0 

The values of the constants v,. and WI. are not known beforehand, but are determined 

from (16) and the boundary conditions (11) in the region Go . The relation between vl, 
and W1* is obtained from (19). The solution in the region to the left of OC is constructed 

in a manner similar to that described above. 

A straightforward analysis of (16) and (19) shows that, in both cases, the resultant solu- 
tions yield the functional dependence of a~*, a?*, 1’1,~ 1’*2, oi,, and os,, on 1’14 and Vze 
whereupon the solutions in the regions G1 and G, may be constructed. 

However, these functional relations are not generally obtainable for arbitrary I/lo and 

va3 ’ since the system of differential equations (16) is not integrable by quadrature. The 
study below gives an exact solution for the one-dimensional case for which V, = 0 and 

an approximate solution for the general case of an oblique shock, for small VI, and Va. 

A B c D 
One-dimensional problem. In this case, 

W, = Vas 0. From (15), C, = (1 - tQ1lS, Ca = 0. 
------ The only possible solution to (16) is the constant one, 

i.e. there is no second fan G (Fig. 1). and the para- 
meters in the regions G,, and G, are identical. The 
first and third Eqs. in (16), for the first fan are identi- 

cally satisfied while the second equation is easily 

integrated. The resultant solution in the G, region is 

Vl - v10= 2 [(i - 01) ‘ia - (i - 010Pl1 

F, = v, + (1 - cop (20) 

I 

! 

Applying conditions (17) on the ray OE. we obtain 

from (20) Oio = - VI0 (i I+ '14 VJ (211 

*- From the combination of (20) and (21) we obtain 

Fig. 2 
the following explicit relations between V, , W, and 

5 , which are valid under conditions obtainable from 

(18) : 
Vl = '/3 (E - I)* q = I- l/R (E + 2)%, i t; s/z v, = g, < f < 1, v, g 0 

where 5, and so are boundary values of 5 on the rays QD and OE , respectively. 

If conditions (18) are not satisfied, i.e. VI0 > 0 , then the solution is piecewise con- 
stant but discontinuous. The functional dependence of ~10 and 8 on VI0 = VI, is given 

by (29). 
Oblique shock for small VI0 and Vao . In this case, o,(z,z)< 1, 

oa (z, z) -s$ 1. The coefficients in (16) may be expanded into series in W, and W, , and 

self-similar solutions may be constructed approximately in terms of series. Hereinafter. 

we confine ourselves to a first approximation, neglecting all quantities of a higher order 
of smallness compared to unity. 

The justification for such an approximation is that, in the one-dimensional case, the 
results of such an approximation were sufficiently close to the exact solution (for very 
strong shock waves with stress discontinuities of the order of l&g/cm? (QJwO. 1) the 
discrepancies in calculations did not exceed 1% ). 
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other time 7, , the curves will be similarly stretched along the X-axis at a ratio of 

7,/71 . 
If the initial values vl~, and va do not satisfy (27), the preceding solution loses 

meaning. It is of interest to note that (27) is not satisfied for a pure shear ( Vu = 0) 

along the half-space boundary, i.e. a sudden shear at the boundary causes a compressive 
shock wave in a direction normal to the boundary. This represents a dynamic manife- 
station of the Poynting effect v and 81. 

An approximate, discontinuous solution is constructeu in the following manner. From 

(19),we have v,* = - til, (1 + 1/p CQ, 8, = 1 - 314 01. - l/0 OZl* (30) 

Eqs. (24) and (26) are still satisfied. In the G, region, the solution equals to zero. 

On the ray QD (Fig.2), the quantities VI and Kl1 have jumps from zero to K, and WI,, 
respectively, obtained from (25), while V,,= UJ,,= 0. In the Gz region, (29) holds. The 

resulting solutions are shown in Fig. 2. 
Note the following-g As (26) shows, the angular range of the characteristics of the 

second fan is a second-order quantity in comparison with Vu and Va . On this very 
“narrow” fan, the change in the state of stress is very intense, albeit continuous. However, 
the region in which this change occurs increases in direct proportion to the elapsed time. 

Thus, the initial discontinuity in the shear velocity V,, g radually diffuses through the 

medium. This is the structure of a shearing “shock” wave in an Almansi medium. 

The known [ll and 121 results for a linearly elastic, Hookean material are obtained 
here as the limiting case for Vu -0 , V,o --) 0 . 

The unloading problem is not examined here. 
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